Allenes. Part 49.1 4-Amino-2-(1-hydroxyalkyl)quinolines from Phenylhydroxylamine and Allenic Nitriles

Stephen R. Landor,*
Department of Chemistry, University of Exeter, Exeter EX4 40D
Z. Tanee Fomum and P. Forche Asobo
University of Yaounde, Cameroon
Phyllis D. Landor and Andrew Johnson
University of the West Indies, Kingston, Jamaica

Allenic nitriles, when heated with phenylhydroxylamine in ethanol for 24 h , form the intermediate 2-alkylidene-4-amino-1,2-dihydro-1-hydroxyquinolines (4) which rearrange spontaneously by a 1,3-hydroxy shift to 4 -amino-2-(1-hydroxyalkyl)quinolines. The 1 -hydroxyquinoline intermediate (4) does not isomerise to 2 -alkyl-4-aminoquinoline 1 -oxide by a 1,4 -proton shift as shown by an independent synthesis of the latter. Phenylpropynenitrile with phenylhydroxylamine gave 8% of 4-amino-2-(2-hydroxyphenyl)quinoline (15).

Isoxazoles are readily formed from hydroxylamine and allenic and acetylenic nitriles. ${ }^{2}$ However, the reaction between phenylhydroxylamine and allenic nitriles does not give a 2,5 -dihydro-2-phenylisoxazole (3) via the conjugated adduct (2), but rather the unconjugated adduct (1) ring closes ortho to the nitrogen on the benzene ring to form a 2 -alkylidene- 4 -amino-1,2-dihydro-1-hydroxyquinoline (4). \dagger
Here electrophilic ring closure of the unconjugated adduct (1) is evidently considerably faster than a proton shift to the conjugated adduct (2) (Scheme 1) \ddagger 4-Amino-1-hydroxy-

(4)

(6)

(3)
$a: R^{1}=R^{2}=M e$
$b ; R^{1}=M e, R^{2}=E t$
$c ; R^{1}=R^{2}=E t$

Scheme 1.
quinolines (4) are unstable even under the neutral conditions of the reaction and rearrange by a 1,3 -hydroxy shift to give 4-amino-2-(1-hydroxyalkyl)quinolines (5).§

We have shown that the alternative 1,4-proton shift to 4 -amino-2-alkylquinoline 1 -oxide (6) does not occur by synthesizing 4 -amino-2-s-butylquinoline 1-oxide (7) (Scheme 2) with very different spectroscopic properties from the

Scheme 2.
† 6-Membered 2-alkylidene-1-hydroxyheterocycles have not been reported in the literature, only a few examples of 1-hydroxy-2-pyridones and -quinolin-2-ones are known. ${ }^{3,4}$
\ddagger The 3,3 -sigmatropic rearrangement of the unconjugated phenylhydrazine adduct was shown to have approximately the same activation energy as the 1,3 -proton shift to the conjugated adduct. ${ }^{5}$
§ Phenylhydroxylamines are well known to rearrange under acid conditions to C-hydroxyanilines by a 1,5 -hydroxy shift through a nitrenium ion intermediate. ${ }^{6}$ 1,3-Hydroxy shifts of phenylhydroxylamines have not been reported in the literature; since our conditions are mildly basic either a concerted or an intimate ion-pair mechanism is suggested.
corresponding product from the reaction of 4-methylhexa-2,3dienenitrile with phenylhydroxylamine.
4-Amino-2-(1-hydroxyalkyl)quinolines show a sharp i.r. band near $3450 \mathrm{~cm}^{-1}$ for hydrogen bonded hydroxy and bands at 3350 and 3200 for the amino group and characteristic twin maxima in the u.v. region near 297 and 315 nm . The ${ }^{1} \mathrm{H}$ n.m.r. spectra always show a 1 H singlet at $\delta 4.7$ for the shielded 3-H, a 2 H broad singlet at $c a . \delta 5.3$ for NH_{2}, a 4 H complex resolving at high field to two doublets and two triplets in the range δ $6.7-7.3$ for $5-8-\mathrm{ArH}$ and $5-, 7-\mathrm{ArH}$, and a 1 H very broad singlet at $c a$. $\delta 10.3$ for the hydrogen bonded OH . The isopropyl side chain shows a 6 H singlet at $\delta 1.33$ for the two equivalent methyls, the s-butyl side chain, a shielded 3 H triplet at 0.555 [see (8)], a 3 H singlet at $\delta 1.333$ and two distorted quintets for the two non-equivalent diastereotopic protons of the CH_{2} at δ 1.646 and 1.838; the 3 -pentyl side chain similarly shows a shielded 6 H triplet at $\delta 0.56$ for the two methyls shielded by the ring current (9), and a 4 H quartet at $\delta 1.65$.

(8)

(9)

The ${ }^{13} \mathrm{C}$ n.m.r. spectrum confirms the 2-(1-hydrox yalkyl) side chain with a quaternary carbon at $\delta 51.218$ p.p.m. The mass spectra show molecular ions ($64-83 \%$); a principal fission pattern for a three-carbon chain shows first loss of ethyl followed by hydroxy (see Scheme 3, b and c) whereas a twocarbon chain first loses OH^{+}and then Me^{\bullet} (see Scheme 3a). Detailed analysis of the mass spectra show that they do not fit alternative structures (3), (4), or (6).
4-Amino-2-(1-hydroxyalkyl)quinolines (5) are stable to acid and base. Treatment with 2.5% alcoholic hydrochloric acid or 4% alcoholic sulphuric acid for 24 h and work-up with carbonate gave a product with a u.v. spectrum identical with that of the starting material. Acetylation with acetic anhydride gave the diacetamide (10) in 15% yield as well as other acetylated products none of which correspond to (11). It is interesting to note that acetylation of the isomeric quinoline N -oxide (7) gave a mixture of acetylated products from which the diacetyl compound (11) was isolated (29%) by p.l.c. A model experiment, starting with N-acetyl-4-aminoquinaldine N-oxide (12), gave 4 -acetamido-2-acetoxymethylquinoline (13) in 45% yield by a Katritzky mechanism ${ }^{11}$ and (11) is assumed to form from (7) by a similar mechanism. However the acetamidoacetate (11) could not be hydrolysed to (5b). Phenylpropynenitrile and phenylhydroxylamine for 20 h under reflux in ethanol gave, after repeated chromatography, 8% of a stable product, 4-amino-2-(2-hydroxyphenyl)quinoline (15), this structure being proposed on the basis of the following spectroscopic evidence (Scheme 4). Strongly hydrogen bonded, broad hydroxy absorption centred at $v_{\text {max. }} 3200 \mathrm{~cm}^{-1}$ and NH_{2} absorption at 3360 and $3450 \mathrm{~cm}^{-1} ; \lambda_{\text {max. }}$ at 211,242 , and 300 $\mathrm{nm} ; \delta_{\mathrm{H}}$ for chelated OH at 11 p.p.m. and a mass spectrum which gave the molecular ion ($M^{+}, 236,100 \%$) as the base peak, a strong $M-1$ peak at $235(33 \%)$ and $M-16(2270,76 \%)$. These results are consistent with the phenolic 4 -amino-2-(2hydroxyphenyl)quinoline structure (15) but not the 4-amino-2-phenyl- N-hydroxy-1,2-dihydroquinoline structure (14). Other chromatography fractions consisted of decomposition products of the starting materials.
a

Scheme 3.

(10)

(12)

(11)

(13)

(14)

Scheme 4.

Experimental

I.r. spectra were determined with Perkin-Elmer 257 and 735 B spectrometers, u.v. spectra for ethanolic solutions with PerkinElmer 137, Beckman 25 and Cary 219 spectrometers, and ${ }^{1} \mathrm{H}$ n.m.r. spectra with Perkin-Elmer R12B and JEOL 60 instruments in deuteriochloroform unless otherwise stated. Highfield ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were determined with a Bruker 250 instrument. Preparation thin layer chromatography (p.l.c.) was carried out on SiO_{2} (Merck PF $254+366$). Allenic nitriles were prepared as previously reported. ${ }^{7}$ Phenylhydroxylamine was freshly prepared by the standard method. ${ }^{8}$

4-Amino-2-(1-hydroxy-1-isopropyl)quinoline.-4-Methyl-penta-2,3-dienenitrile ($2.79 \mathrm{~g}, 0.03 \mathrm{~mol}$) in ethanol $(95 \% ; 25 \mathrm{ml})$ and phenylhydroxylamine ($3.27 \mathrm{~g}, 0.03 \mathrm{~mol}$) in ethanol $(95 \% ; 25$ ml) were heated under reflux for 48 h and solvent was evaporated from the reaction mixture and the residue chromatographed [neutral alumina (activity 2; 300 g), elution with ethyl acetate] to give a crude product which was recrystallised (acetone-hexane) to give the title compound (5.25 g, 86%), m.p. $165^{\circ} \mathrm{C}$ (Found: C, 71.55 ; H, 7.1; N, 14.0 . $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires C, $71.29 ; \mathrm{H}, 6.93 ; \mathrm{N}, 13.86 \%$); $v_{\text {max. }} 3390$ and $3200\left(\mathrm{NH}_{2}\right)$ and $3400 \mathrm{~cm}^{-1}(\mathrm{br}, \mathrm{OH}) ; \lambda_{\text {max. }} 298(22300)$ and $316 \mathrm{~nm}(22800)$; $\delta 1.33\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 4.77,5.3(2 \mathrm{H}$, br s, NH_{2}, exchanges $\mathrm{D}_{2} \mathrm{O}$), 6.6-7.4 (4 H, m, aromatic 4-H), and 10.25 (1 H , br s, OH, exchanges $\mathrm{D}_{2} \mathrm{O}$); $m / z 202\left(M^{+}, 83\right)$, 185 (100), 170 (54), 157 (47), 144 (36), and 115 (29).

4-Amino-2-(1-hydroxy-1-methylpropyl)quinoline.-Similarly, 4-methylhexa-2,3-diene ($4.28 \mathrm{~g}, 0.04 \mathrm{~mol}$) and phenylhydroxylamine ($4.36,0.04 \mathrm{~mol}$) when heated under reflux in ethanol $(95 \% ; 50 \mathrm{ml})$ for 48 h gave the title compound ($7.34 \mathrm{~g}, 85 \%$), m.p. $158{ }^{\circ} \mathrm{C}$ (Found: C, 72.1; H, 7.3; N, 13.0. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires C , $72.22 ; \mathrm{H}, 7.41 ; \mathrm{N}, 12.96 \%$); $v_{\max .} 3460(\mathrm{OH})$ and 3325 and 3180 $\mathrm{cm}^{-1}\left(\mathrm{NH}_{2}\right) ; \lambda_{\text {max. }} 298(21700)$ and $316 \mathrm{~nm}(23500) ; \delta_{\mathrm{H}} 0.555$ $\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.333\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.646$ and $1.838(2 \mathrm{H}$, $2 \times$ quin, HCHCH_{3}), $4.708(1 \mathrm{H}, \mathrm{s},=\mathrm{CN}-3)$, $5.196(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 6.6-7.3(4 \mathrm{H}, 2 \times \mathrm{t}+2 \times \mathrm{d}$, aromatic 4-H), and 10.282 $(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; \delta_{\mathrm{c}} 8.79\left(\mathrm{MeCH}_{2}\right), 27.40(\mathrm{MeC}), 34.71\left(\mathrm{CH}_{2}\right)$, $51.22(\mathrm{CMeEtOH}), 81.36\left(\mathrm{NH}_{2} \mathrm{C}=\mathrm{CH}\right), 108.79(=\mathrm{CH}), 120.68$ $(=\mathrm{CH}), 122.24(=\mathrm{CH}), 127.80(=\mathrm{CH}), 135.01(\mathrm{C}), 144.00(\mathrm{C})$, $168.80(\mathrm{C})$, and 172.19 (C); $M^{+}, 216$ (64), 199 (42), 187 (64), 170 (100), and 144 (27).

4-Amino-2-(1-hydroxy -1-ethylpropyl)quinoline.-Similarly, 4-ethylhexa-2,3-dienenitrile ($3.63 \mathrm{~g}, 0.03 \mathrm{~mol}$) and phenylhydroxylamine ($3.27 \mathrm{~g}, 0.03 \mathrm{~mol}$) when heated under reflux in ethanol $(95 \% ; 50 \mathrm{ml})$ for 48 h gave the title compound $(5.73 \mathrm{~g}$, 83%), m.p. $140^{\circ} \mathrm{C}$ (Found: C, 73.15 ; H, 7.85 ; N, 12.25. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires C, $73.04 ; \mathrm{H}, 7.83 ; \mathrm{N}, 12.17 \%$); $v_{\text {max. }} 3400$ (OH) and 3360 and $3180 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right) ; \lambda_{\text {max. }} 297(22600)$ and $318 \mathrm{~nm}(25000) ; \delta 0.52\left[6 \mathrm{H}, \mathrm{t},\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}\right], 1.62[4 \mathrm{H}, \mathrm{q}$, $\left.\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}\right], 4.58(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}), 5.30\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 6.7-7.2$ $\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic 4-H), and $10.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}) ; 230\left(\mathrm{M}^{+}, 70\right)$, 213 (38), 201 (100), 184 (77), and 156 (41).

4-Amino-2-(2-hydroxyphenyl)quinoline.-3-Phenylpropynenitrile ($3.81 \mathrm{~g}, 0.03 \mathrm{~mol}$) and phenylhydroxylamine ($3.27 \mathrm{~g}, 0.03$ mol) when heated under reflux in ethanol ($150 \mathrm{ml} ; 95 \%$) for 60 h gave, on evaporation of solvent, a brown oil (6.9 g). Repeated chromatography of this followed by recrystallisation of the product gave the title compound ($0.57 \mathrm{~g}, 8 \%$), m.p. $118{ }^{\circ} \mathrm{C}$ (Found: C, 76.3; H, 5.1; N, 11.95. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$ requires C, 76.27; $\mathrm{H}, 5.08$; N, 11.86); $v_{\text {max. }} 3450$ and $3340\left(\mathrm{NH}_{2}\right)$ and $3200 \mathrm{~cm}^{-1}$ $(\mathrm{OH}) ; \lambda_{\text {max. }} 210(31500), 243$ (22000), and $301 \mathrm{~nm}(13600)$; $\delta\left(\mathrm{CDCl}_{3}+\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 3.30(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.25(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.\mathrm{NH}_{2}\right), 7.0-8.1(9 \mathrm{H}, \mathrm{m}$, aromatic $9-\mathrm{H}), 11.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$; $236\left(M^{+}, 100\right), 235(33), 220(76), 191(15), 165$ (22), and $149(23)$.
2-(1-Methylpropyl)quinoline N -Oxide.-2-(1-Methylpropyl)quinoline $\left(6.23 \mathrm{~g}, 34 \mathrm{mmol}\right.$; b.p. $105-108^{\circ} \mathrm{C}$ at 1.0 mmHg , prepared by a modified literature method ${ }^{9}$), glacial acetic acid (30 ml), and hydrogen peroxide ($30 \mathrm{wt} \%$ in water; 7.5 ml), were heated under reflux for 6.5 h . The mixture was then evaporated, neutralised with aqueous sodium hydroxide (10%) and extracted with chloroform. Work-up of the extract followed by p.l.c. gave 2-(1-methylpropyl)quinoline N-oxide ($3.2 \mathrm{~g}, 46 \%$) and starting material ($2.7 \mathrm{~g}, 44 \%$) (Found: C, 75.35 ; H, 7.45; N, 7.15. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO} \cdot \frac{1}{3} \mathrm{H}_{2} \mathrm{O}$ requires C, $75.36 ; \mathrm{H}, 7.57 ; \mathrm{N}, 6.76 \%$); $\lambda_{\text {max. }} 232(37500), 238(41800), 318(8000)$, and $330(7200) ; \delta$ $0.9\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.33\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH}_{3} \mathrm{CH}\right), 1.6(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{CH}\right), 3.96\left(1 \mathrm{H}\right.$, sextet, $\left.\mathrm{CH}_{2} \mathrm{CHCH}_{3}\right), 7.1-7.9(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$, and $8.8(1 \mathrm{H}, \mathrm{dd}, 8-\mathrm{H}) ; 201\left(\mathrm{M}^{+}, 29\right)$ and $184(100)$.
2-(1-Methylpropyl)-4-nitroquinoline N -Oxide.-2-(1-Methylpropyl)quinoline N-oxide ($0.52 \mathrm{~g}, 2.5 \mathrm{mmol}$) in ice-salt was treated with concentrated sulphuric acid $(d 1.84 ; 1.5 \mathrm{ml}$ added dropwise) and then heated to $65^{\circ} \mathrm{C}$ when concentrated nitric acid ($d 1.42 ; 9.3 \mathrm{ml}$) was added slowly with constant shaking (30 min). Shaking was continued for 1.5 h after which the mixture was poured into ice-water and extracted with chloroform; workup of the extract followed by p.l.c. gave the title compound $(0.21$ $\mathrm{g}, 34 \%$), m.p. $56-57^{\circ} \mathrm{C}$ (Found: C, 63.25; H, 5.95; N, 11.0; O, 19.2. $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 63.4 ; \mathrm{H}, 5.69 ; \mathrm{N}, 113.8 ; \mathrm{O}$, 19.49%); $\lambda_{\text {max. }} 257(21000)$ and $380(10800) ; \delta 7.6-7.8(2 \mathrm{H}, \mathrm{m}$, 6-H, 7-H), 8.10 ($1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}$), 8.5-8.8 (2 H, 5-H, 8-H); 246 (M^{+}, 14), 229 (33), 218 (19), 204 (27), 202 (32), 183 (32), 170 (63), and 157 (100).
4-Amino-2-(1-methylpropyl)quinoline N -Oxide.-The above nitroquinoline N-oxide ($0.185 \mathrm{~g}, 0.75 \mathrm{mmol}$) in ethanol (40 ml) with $\mathrm{Pd} / \mathrm{C}(10 ; 0.069 \mathrm{~g})$ was allowed to adsorb hydrogen (50 ml , 2.2 mmol) for 1 h . Work-up of the mixture gave the title compound $\left(0.10 \mathrm{~g}, 62 \%\right.$), m.p. $190-192{ }^{\circ} \mathrm{C}$ (Found: C, 72.9 ; H, 7.0; $\mathrm{N}, 13.15 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 72.22 ; \mathrm{H}, 7.41 ; \mathrm{N}, 12.96$); $v_{\text {max. }} 3280$ and $3140 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right) ; \lambda_{\text {max. }} 218(38500), 244$ (18000), $257(18000), 262(18000), 350(11000)$, and 366 (10 200); $\delta 0.89\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.23\left(3 \mathrm{H}, \mathrm{d}, \mathrm{CH} \mathrm{CH}_{3} \mathrm{CH}\right), 1.3-$ $\left.2.0(2 \mathrm{H} \text {, overlapping quintets } H \mathrm{CHCH})_{3}\right), 3.89(1 \mathrm{H}$, sextet, $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$), $6.32\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right.$, exchanges $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.48(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}), 7.33(1 \mathrm{H}, \mathrm{t}, 7-\mathrm{H}), 7.62(1 \mathrm{H}, \mathrm{t}, 6-\mathrm{H}), 8.02(1 \mathrm{H}, \mathrm{dd}, 8-\mathrm{H}, J 8$ and 10 Hz), and $8.66(1 \mathrm{H}$, dd, $8-\mathrm{H}, J 8$ and 10 Hz$) ; 216\left(M^{+}\right.$, 9.4), 199 (30), 183 (13), 171 (32), 143 (14.8), 116 (28), 56 (55), 54 (49), and 42 (100).

4-Acetamido-1-acetyl-2-(1-methylpropylidene)-1,2-dihydro-
quinoline (10).-4-Amino-2-(1-hydroxy-1-methylpropyl)quinoline $(0.216 \mathrm{~g}, 1 \mathrm{mmol})$ with acetic anhydride (2.4 ml) at $100^{\circ} \mathrm{C}$ for 45 min gave a mixture of acetates (0.29 g , oil). P.l.c. ($\mathrm{EtOAc}-\mathrm{C}_{6} \mathrm{H}_{14} ; 4: 1$) gave the title compound ($0.045 \mathrm{~g}, 15 \%$), m.p. $212-215^{\circ} \mathrm{C} ; \mathrm{v}_{\text {max }} 3400(\mathrm{NH})$ and $1660(\mathrm{CO}) ; \lambda_{\text {max. }} 234$ (14900), 254 (10000), 274 (7200), and $283(7500)$; $\delta_{\mathrm{H}} 1.26(6 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{CO}\right), 1.5\left(3 \mathrm{H}, 2 \times \mathrm{t}, \mathrm{CH}_{3} \mathrm{CH}_{2}, E\right.$ and $\left.Z\right), 1.89-1.99$ $\left(2 \mathrm{H}, 2 \times 9, \mathrm{CH}_{2}, E\right.$ and $\left.Z\right), 2.24\left(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}, E\right.$ and Z), $5.77(1 \mathrm{H}, \mathrm{s},=\mathrm{CH}-3)$, and $7.26-7.68(\mathrm{SH}, \mathrm{m}, \mathrm{ArH}$ and NH); $\delta_{\mathrm{C}} 8.7\left(\mathrm{CH}_{3}\right), 27.3\left(3 \mathrm{H}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{3}\right), 35.0\left(\mathrm{CH}_{2}\right), 83$ $(\mathrm{CH}), 99(\mathrm{CH}), 114(\mathrm{CH}), 123(\mathrm{CH}), 126(\mathrm{CH})$, and $129(\mathrm{CH})$; 284 ($M^{+}, 68$), 268 (46), 239 (24), 200 (49), 171 (53), 115 (22), 85 (41), 71 (63), 57 (100), 43 (69), and 41 (28).

4-Acetamido-2-(1-acetyl-1-methylpropyl)quinoline (11).-4-Amino-2-(1-methylpropyl)quinoline N-oxide $(0.05 \mathrm{~g}, 0.23$ mmol) in acetic anhydride (1 ml) under reflux for 45 min gave a mixture of acetyl compounds ($0.044 \mathrm{~g}, 64 \%$) which on p.l.c. gave the title compound ($0.02 \mathrm{~g}, 29 \%$); $v_{\text {max. }} 3250(\mathrm{NH}), 1720$ and $1660 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \lambda_{\text {max. }} 232$ (38900) and $295(8700)$, and 320 (6 200); $\delta 1.18$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{C} \mathrm{H}_{3} \mathrm{CH}_{2}, 1.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right.$), 2.09- 2.17 (1 H , quin., HCHMe), 2.11 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}$), 2.19 ($3 \mathrm{H}, \mathrm{s}$, MeCONH), 2.76 (1 H , quin., HCHMe), 5.63 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2} \mathrm{C}=$ $\mathrm{CH})$, and $7.26-8.38(5 \mathrm{H}, \mathrm{m}, \mathrm{N} H+\mathrm{H}-4) ; 241\left(\mathrm{M}^{+}-\mathrm{MeCO}_{2}\right.$, 11), 240 (33), 197 (42), 182 (87), 181 (64), 127 (10), 58 (19), 57 (100), 56 (19), 55 (43), and 43 (98).

4-Acetamido-2-methylquinoline N -Oxide.-A cooled solution $\left(0-5^{\circ} \mathrm{C}\right)$ of m-chloroperbenzoic acid $(1.09 \mathrm{~g}, 6.3 \mathrm{mmol})$ in chloroform (15 ml), was added slowly with stirring to an icecold solution of 4-acetamido-2-methylquinoline ($1.0 \mathrm{~g}, 5 \mathrm{mmol}$) [m.p. 162-164 ${ }^{\circ} \mathrm{C}$, lit., ${ }^{10}$ m.p. $162-164^{\circ} \mathrm{C}$] in chloroform (10 ml). The mixture was allowed to warm to room temperature and evaporated after 3 h to yield, after chromatography, recovered starting material ($0.5 \mathrm{~g}, 50 \%$) and the title compound ($0.33 \mathrm{~g}, 28 \%$), m.p. $122^{\circ} \mathrm{C}$ (after recrystallisation from acetone) (Found: C, 61.55; H, 5.85; N, 11.9. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C, 61.54; H, 5.98; N, 11.97\%); $v_{\text {max. }} 3600-2900\left(\mathrm{H}_{2} \mathrm{O}\right), 3250$ (NH), and $1700 \mathrm{~cm}^{-1}(\mathrm{CO})$; $\lambda_{\text {max. }} 229$ (35000), 244 (30000), and $344 \mathrm{~nm}(12000) ; \delta 2.3\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}=\right)$, $2.63(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{CO}\right), 7-8.7(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, and $10.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$.

4-Acetamido-2-acetoxymethylenequinoline.-4-Acetamido-2methylquinoline N-oxide hydrate ($0.22 \mathrm{~g}, 0.94 \mathrm{mmol}$) and acetic anhydride ($4.32 \mathrm{~g}, 42 \mathrm{mmol}$) refluxed for 45 min gave, after p.l.c. ($\mathrm{EtOAc}-\mathrm{C}_{6} \mathrm{H}_{14}, 4: 1$), the title compound ($0.11 \mathrm{~g}, 45.4 \%$), m.p. $134-135^{\circ} \mathrm{C}$ (Found: C, 65.2; H, 5.7; N, 10.9; O, 18.2 . $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, $65.12 ; \mathrm{H}, 5.43 ; \mathrm{N}, 10.85 ; \mathrm{O}, 18.6 \%$); $v_{\text {max. }} 3340(\mathrm{NH}), 1720$, and $1690 \mathrm{~cm}^{-1}(\mathrm{CO}) ; \lambda_{\text {max. }} 258$ (57000), $297(10400)$, and $318(6500)$; $\delta_{\mathrm{H}} 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.25(3$ $\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CON}$), 5.27 ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}$), $7.2-8.13$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), and $8.33\left(1 \mathrm{H}, \mathrm{s}, \mathrm{NH} ; \delta_{\mathrm{c}} 20.89\left(\mathrm{CH}_{3} \mathrm{CON}\right), 67.49\left(\mathrm{CH}_{2} \mathrm{O}\right)\right.$, 109.08 (C-2), 119.39 (CH-3), 119.56 (CH-8), 126.31 (CH-7), 129.69 (CH-6), 130.04 (CH-5), 141.35 (CH-4), 148.30 (C-9), 156.94 (C-10), 169.35 (COO), and 171.15 (CON). Recovered starting material ($0.09 \mathrm{~g}, 41 \%$).

Acknowledgements

We thank the Leverhulme Trust for the award of an Emeritus Fellowship to S. R. L., Vlademir Sik for highfield spectra, and Mark Whiting for helpful discussion.

References

1 Part 48, S. R. Landor, P. D. Landor, J. Seliki-Muruumu, Z. T. Fomum, and J. T. Mbafor, J. Chem. Soc., Perkin Trans I., 1988, 1759.
2 Z. T. Fomun, P. F. Asobo, S. R. Landor, and P. D. Landor, J. Chem. Soc., Perkin Trans. 1, 1984, 1079.
3 J. Elgnero, C. Marzin, A. R. Katritzky, and P. Linda, Adv. Heterocycl. Chem., 1976, Suppl. 1, 84.
4 E. J. Moriconi and F. J. Creegan, J. Org. Chem., 1966, 31, 2090; E. J. Moriconi, F. J. Creegan, C. K. Donovan, and F. A. Spano, ibid., 1963, 28, 2215; M. M. Robinson and B. L. Robinson, ibid., 1956, 21, 1337, J. Am. Chem. Soc., 1958, 80, 3443.
5 Z. T. Fomum, S. R. Landor, P. D. Landor, and G. W. P. Mpango, J. Chem. Soc., Perkin Trans. 1, 1981, 2997.
6 E. D. Hughes and C. K. Ingold, Q. Rev., 1952, 6, 34.
7 P. M. Greaves, S. R. Landor, and D. R. J. Laws, J. Chem. Soc. C, 1968, 291.
8 'Vogel's Textbook of Practical Organic Chemistry,' B. S. Funiss, A. J. Hannaford, V. Rogers, P. W. G. Smith, and A. R. Tatchell, Longman, 1978, 4th edn., 722.
9 K. Ziegler and H. Zeiser, Annalen, 1931, 485, 174; K. W. Bergstrom, J. Am. Chem. Soc., 1931, 53, 4065.

10 W. C. Austin, M. D. Potter, and E. P. Taylor, J. Chem. Soc., 1958, 1489.
11 R. Bodalski and A. R. Katritzky, J. Chem. Soc. B, 1968, 831.
Received 18th April 1988; Paper 8/01475B

